Вконтакте Facebook Twitter Лента RSS

Подключение дисплея lcd 1602 к arduino. Учебный курс

  • Модуль FC-113 сделан на базе микросхемы PCF8574T, которая представляет собой 8-битный сдвиговый регистр - «расширитель» входов-выходов для последовательной шины I2C. На рисунке микросхема обозначена DD1.
  • R1 - подстроечный резистор для регулировки контрастности ЖК дисплея.
  • Джампер J1 используется для включения подсветки дисплея.
  • Выводы 1…16 служат для подключения модуля к выводам LCD дисплея.
  • Контактные площадки А1…А3 нужны для изменения адреса I2C устройства. Запаивая соответствующие перемычки, можно менять адрес устройства. В таблице приведено соответствие адресов и перемычек: "0" соответствует разрыву цепи, "1" - установленной перемычке. По умолчанию все 3 перемычки разомкнуты и адрес устройства 0x27 .

2 Схема подключения ЖК дисплея к Arduino по протоколу I2C

Подключение модуля к Arduino осуществляется стандартно для шины I2C: вывод SDA модуля подключается к аналоговому порту A4, вывод SCL - к аналоговому порту A5 Ардуино. Питание модуля осуществляется напряжением +5 В от Arduino. Сам модуль соединяется выводами 1…16 с соответствующими выводами 1…16 на ЖК дисплее.


3 Библиотека для работы по протоколу I2C

Теперь нужна библиотека для работы с LCD по интерфейсу I2C. Можно воспользоваться, например, вот этой (ссылка в строке "Download Sample code and library").

Скачанный архив LiquidCrystal_I2Cv1-1.rar разархивируем в папку \libraries\ , которая находится в директории Arduino IDE.

Библиотека поддерживает набор стандартных функций для LCD экранов:

Функция Назначение
LiquidCrystal() создаёт переменную типа LiquidCrystal и принимает параметры подключения дисплея (номера выводов);
begin() инициализация LCD дисплея, задание параметров (кол-во строк и символов);
clear() очистка экрана и возврат курсора в начальную позицию;
home() возврат курсора в начальную позицию;
setCursor() установка курсора на заданную позицию;
write() выводит символ на ЖК экран;
print() выводит текст на ЖК экран;
cursor() показывает курсор, т.е. подчёркивание под местом следующего символа;
noCursor() прячет курсор;
blink() мигание курсора;
noBlink() отмена мигания;
noDisplay() выключение дисплея с сохранением всей отображаемой информации;
display() включение дисплея с сохранением всей отображаемой информации;
scrollDisplayLeft() прокрутка содержимого дисплея на 1 позицию влево;
scrollDisplayRight() прокрутка содержимого дисплея на 1 позицию вправо;
autoscroll() включение автопрокрутки;
noAutoscroll() выключение автопрокрутки;
leftToRight() задаёт направление текста слева направо;
rightToLeft() направление текста справа налево;
createChar() создаёт пользовательский символ для LCD-экрана.

4 Скетч для вывода текста на LCD экран по шине I2C

Откроем образец: Файл Образцы LiquidCrystal_I2C CustomChars и немного его переделаем. Выведем сообщение, в конце которого будет находиться мигающий символ. В комментариях к коду прокомментированы все нюансы скетча.

#include // подключаем библиотеку Wire #include // подключаем библиотеку ЖКИ #define printByte(args) write(args); // uint8_t heart = {0x0,0xa,0x1f,0x1f,0xe,0x4,0x0}; // битовая маска символа «сердце» LiquidCrystal_I2C lcd(0x27, 16, 2); // Задаём адрес 0x27 для LCD дисплея 16x2 void setup() { lcd.init(); // инициализация ЖК дисплея lcd.backlight(); // включение подсветки дисплея lcd.createChar(3, heart); // создаём символ «сердце» в 3 ячейке памяти lcd.home(); // ставим курсор в левый верхний угол, в позицию (0,0) lcd.!"); // печатаем строку текста lcd.setCursor(0, 1); // перевод курсора на строку 2, символ 1 lcd.print(" i "); // печатаем сообщение на строке 2 lcd.printByte(3); // печатаем символ «сердце», находящийся в 3-ей ячейке lcd.print(" Arduino "); } void loop() { // мигание последнего символа lcd.setCursor(13, 1); // перевод курсора на строку 2, символ 1 lcd.print("\t"); delay(500); lcd.setCursor(13, 1); // перевод курсора на строку 2, символ 1 lcd.print(" "); delay(500); }

Кстати, символы, записанные командой lcd.createChar(); , остаются в памяти дисплея даже после выключения питания, т.к. записываются в ПЗУ дисплея 1602.

5 Создание собственных символов для ЖК дисплея

Немного подробнее рассмотрим вопрос создания собственных символов для ЖК экранов. Каждый символ на экране состоит из 35-ти точек: 5 в ширину и 7 в высоту (+1 резервная строка для подчёркивания). В строке 6 приведённого скетча мы задаём массив из 7-ми чисел: {0x0, 0xa, 0x1f, 0x1f, 0xe, 0x4, 0x0} . Преобразуем 16-ричные числа в бинарные: {00000, 01010, 11111, 11111, 01110, 00100, 00000} . Эти числа - не что иное, как битовые маски для каждой из 7-ми строк символа, где "0" обозначают светлую точку, а "1" - тёмную. Например, символ сердца, заданный в виде битовой маски, будет выглядеть на экране так, как показано на рисунке.

6 Управление ЖК экраном по шине I2C

Загрузим скетч в Arduino. На экране появится заданная нами надпись с мигающим курсором в конце.


7 Что находится «за» шиной I2C

В качестве бонуса рассмотрим временную диаграмму вывода латинских символов "A", "B" и "С" на ЖК дисплей. Эти символы имеются в ПЗУ дисплея и выводятся на экран просто передачей дисплею их адреса. Диаграмма снята с выводов RS, RW, E, D4, D5, D6 и D7 дисплея, т.е. уже после преобразователя FC-113 «I2C параллельная шина». Можно сказать, что мы погружаемся немного «глубже» в «железо».


Временная диаграмма вывода латинских символов "A", "B" и "С" на LCD дисплей 1602

На диаграмме видно, что символы, которые имеются в ПЗУ дисплея (см. стр.11 даташита, ссылка ниже), передаются двумя полубайтами, первый из которых определяет номер столбца таблицы, а второй - номер строки. При этом данные «защёлкиваются» по фронту сигнала на линии E (Enable), а линия RS (Register select, выбор регистра) находится в состоянии логической единицы, что означает передачу данных. Низкое состояние линии RS означает передачу инструкций, что мы и видим перед передачей каждого символа. В данном случае передаётся код инструкции возврата каретки на позицию (0, 0) ЖК дисплея, о чём также можно узнать, изучив техническое описание дисплея.

И ещё один пример. На этой временной диаграмме показан вывод символа «Сердце» на ЖК дисплей.


Опять, первые два импульса Enable соответствуют инструкции Home() (0000 0010 2) - возврат каретки на позицию (0; 0), а вторые два - вывод на ЖК дисплей хранящийся в ячейке памяти 3 10 (0000 0011 2) символ «Сердце» (инструкция lcd.createChar(3, heart); скетча).

LCD дисплей – частый гость в проектах ардуино. Но в сложных схемах у нас может возникнуть проблема недостатка портов Arduino из-за необходимости подключить экран, у которого очень очень много контактов. Выходом в этой ситуации может стать I2C /IIC переходник, который подключает практически стандартный для Arduino экран 1602 к платам Uno, Nano или Mega всего лишь при помощи 4 пинов. В этой статье мы посмотрим, как можно подключить LCD экран с интерфейсом I2C, какие можно использовать библиотеки, напишем короткий скетч-пример и разберем типовые ошибки.

Жидкокристаллический дисплей (Liquid Crystal Display) LCD 1602 является хорошим выбором для вывода строк символов в различных проектах. Он стоит недорого, есть различные модификации с разными цветами подсветки, вы можете легко скачать готовые библиотеки для скетчей Ардуино. Но самым главным недостатком этого экрана является тот факт, что дисплей имеет 16 цифровых выводов, из которых обязательными являются минимум 6. Поэтому использование этого LCD экрана без i2c добавляет серьезные ограничения для плат Arduino Uno или Nano. Если контактов не хватает, то вам придется покупать плату Arduino Mega или же сэкономить контакты, в том числе за счет подключения дисплея через i2c.

Краткое описание пинов LCD 1602

Давайте посмотрим на выводы LCD1602 повнимательней:

Каждый из выводов имеет свое назначение:

  1. Земля GND;
  2. Питание 5 В;
  3. Установка контрастности монитора;
  4. Команда, данные;
  5. Записывание и чтение данных;
  6. Enable;

7-14. Линии данных;

  1. Плюс подсветки;
  2. Минус подсветки.

Технические характеристики дисплея:

  • Символьный тип отображения, есть возможность загрузки символов;
  • Светодиодная подсветка;
  • Контроллер HD44780;
  • Напряжение питания 5В;
  • Формат 16х2 символов;
  • Диапазон рабочих температур от -20С до +70С, диапазон температур хранения от -30С до +80 С;
  • Угол обзора 180 градусов.

Схема подключения LCD к плате Ардуино без i2C

Стандартная схема присоединения монитора напрямую к микроконтроллеру Ардуино без I2C выглядит следующим образом.

Из-за большого количества подключаемых контактов может не хватить места для присоединения нужных элементов. Использование I2C уменьшает количество проводов до 4, а занятых пинов до 2.

Где купить LCD экраны и шилды для ардуино

LCD экран 1602 (и вариант 2004) довольно популярен, поэтому вы без проблем сможете найти его как в отечественных интернет-магазинах, так и на зарубежных площадках. Приведем несколько ссылок на наиболее доступные варианты:

Модуль LCD1602+I2C с синим экраном, совместим с Arduino Простой дисплей LCD1602 (зеленая подсветка) дешевле 80 рублей Большой экран LCD2004 с I2C HD44780 для ардуино (синяя и зеленая подсветка)
Дисплей 1602 с IIC адаптером и синей подсветкой Еще один вариант LCD1602 со впаянным I2C модулем Модуль адаптера Port IIC/I2C/TWI/SPI для экрана 1602, совместим с Ардуино
Дисплей с RGB-подсветкой! LCD 16×2 + keypad +Buzzer Shield for Arduino Шилд для Ардуино с кнопками и экраном LCD1602 LCD 1602 LCD дисплей для 3D принтера (Smart Controller for RAMPS 1.4, Text LCD 20×4), модулем кардридера SD и MicroSD-

Описание протокола I2C

Прежде чем обсуждать подключение дисплея к ардуино через i2c-переходник, давайте вкратце поговорим о самом протоколе i2C.

I2C / IIC (Inter-Integrated Circuit) – это протокол, изначально создававшийся для связи интегральных микросхем внутри электронного устройства. Разработка принадлежит фирме Philips. В основе i2c протокола является использование 8-битной шины, которая нужна для связи блоков в управляющей электронике, и системе адресации, благодаря которой можно общаться по одним и тем же проводам с несколькими устройствами. Мы просто передаем данные то одному, то другому устройству, добавляя к пакетам данных идентификатор нужного элемента.

Самая простая схема I2C может содержать одно ведущее устройство (чаще всего это микроконтроллер Ардуино) и несколько ведомых (например, дисплей LCD). Каждое устройство имеет адрес в диапазоне от 7 до 127. Двух устройств с одинаковым адресом в одной схеме быть не должно.

Плата Arduino поддерживает i2c на аппаратном уровне. Вы можете использовать пины A4 и A5 для подключения устройств по данному протоколу.

В работе I2C можно выделить несколько преимуществ:

  • Для работы требуется всего 2 линии – SDA (линия данных) и SCL (линия синхронизации).
  • Подключение большого количества ведущих приборов.
  • Уменьшение времени разработки.
  • Для управления всем набором устройств требуется только один микроконтроллер.
  • Возможное число подключаемых микросхем к одной шине ограничивается только предельной емкостью.
  • Высокая степень сохранности данных из-за специального фильтра подавляющего всплески, встроенного в схемы.
  • Простая процедура диагностики возникающих сбоев, быстрая отладка неисправностей.
  • Шина уже интегрирована в саму Arduino, поэтому не нужно разрабатывать дополнительно шинный интерфейс.

Недостатки:

  • Существует емкостное ограничение на линии – 400 пФ.
  • Трудное программирование контроллера I2C, если на шине имеется несколько различных устройств.
  • При большом количестве устройств возникает трудности локализации сбоя, если одно из них ошибочно устанавливает состояние низкого уровня.

Модуль i2c для LCD 1602 Arduino

Самый быстрый и удобный способ использования i2c дисплея в ардуино – это покупка готового экрана со встроенной поддержкой протокола. Но таких экранов не очень много истоят они не дешево. А вот разнообразных стандартных экранов выпущено уже огромное количество. Поэтому самым доступным и популярным сегодня вариантом является покупка и использование отдельного I2C модуля – переходника, который выглядит вот так:

С одной стороны модуля мы видим выводы i2c – земля, питание и 2 для передачи данных. С другой переходника видим разъемы внешнего питания. И, естественно, на плате есть множество ножек, с помощью которых модуль припаивается к стандартным выводам экрана.


Для подключения к плате ардуино используются i2c выходы. Если нужно, подключаем внешнее питание для подстветки. С помощью встроенного подстроечного резистора мы можем настроить настраиваемые значения контрастности J

На рынке можно встретить LCD 1602 модули с уже припаянными переходниками, их использование максимально упощено. Если вы купили отдельный переходник, нужно будет предварительно припаять его к модулю.

Подключение ЖК экрана к Ардуино по I2C

Для подключения необходимы сама плата Ардуино, дисплей, макетная плата, соединительные провода и потенциометр.

Если вы используете специальный отдельный i2c переходник, то нужно сначала припаять его к модулю экрана. Ошибиться там трудно, можете руководствоваться такой схемой.


Жидкокристаллический монитор с поддержкой i2c подключается к плате при помощи четырех проводов – два провода для данных, два провода для питания.

  • Вывод GND подключается к GND на плате.
  • Вывод VCC – на 5V.
  • SCL подключается к пину A5.
  • SDA подключается к пину A.

И это все! Никаких паутин проводов, в которых очень легко запутаться. При этом всю сложность реализации i2C протокола мы можем просто доверить библиотекам.

Библиотеки для работы с i2c LCD дисплеем

Для взаимодействие Arduino c LCD 1602 по шине I2C вам потребуются как минимум две библиотеки:

  • Библиотека Wire.h для работы с I2C уже имеется в стандартной программе Arduino IDE.
  • Библиотека LiquidCrystal_I2C.h, которая включает в себя большое разнообразие команд для управления монитором по шине I2C и позволяет сделать скетч проще и короче. Нужно дополнительно установить библиотеку После подключения дисплея нужно дополнительно установить библиотеку LiquidCrystal_I2C.h

После подключения к скетчу всех необходимых библиотек мы создаем объект и можем использовать все его функции. Для тестирования давайте загрузим следующий стандартный скетч из примера.

#include #include // Подключение библиотеки //#include // Подключение альтернативной библиотеки LiquidCrystal_I2C lcd(0x27,16,2); // Указываем I2C адрес (наиболее распространенное значение), а также параметры экрана (в случае LCD 1602 - 2 строки по 16 символов в каждой //LiquidCrystal_PCF8574 lcd(0x27); // Вариант для библиотеки PCF8574 void setup() { lcd.init(); // Инициализация дисплея lcd.backlight(); // Подключение подсветки lcd.setCursor(0,0); // Установка курсора в начало первой строки lcd.print("Hello"); // Набор текста на первой строке lcd.setCursor(0,1); // Установка курсора в начало второй строки lcd.print("ArduinoMaster"); // Набор текста на второй строке } void loop() { }

Описание функций и методов библиотеки LiquidCrystal_I2C:

  • home() и clear() – первая функция позволяет вернуть курсор в начало экрана, вторая тоже, но при этом удаляет все, что было на мониторе до этого.
  • write(ch) – позволяет вывести одиночный символ ch на экран.
  • cursor() и noCursor() – показывает/скрывает курсор на экране.
  • blink() и noBlink() – курсор мигает/не мигает (если до этого было включено его отображение).
  • display() и noDisplay() – позволяет подключить/отключить дисплей.
  • scrollDisplayLeft() и scrollDisplayRight() – прокручивает экран на один знак влево/вправо.
  • autoscroll() и noAutoscroll() – позволяет включить/выключить режим автопрокручивания. В этом режиме каждый новый символ записывается в одном и том же месте, вытесняя ранее написанное на экране.
  • leftToRight() и rightToLeft() – Установка направление выводимого текста – слева направо или справа налево.
  • createChar(ch, bitmap) – создает символ с кодом ch (0 – 7), используя массив битовых масок bitmap для создания черных и белых точек.

Альтернативная библиотека для работы с i2c дисплеем

В некоторых случаях при использовании указанной библиотеки с устройствами, оснащенными контроллерами PCF8574 могут возникать ошибки. В этом случае в качестве альтернативы можно предложить библиотеку LiquidCrystal_PCF8574.h. Она расширяет LiquidCrystal_I2C, поэтому проблем с ее использованием быть не должно.

Проблемы подключения i2c lcd дисплея

Если после загрузки скетча у вас не появилось никакой надписи на дисплее, попробуйте выполнить следующие действия.

Во-первых, можно увеличить или уменьшить контрастность монитора. Часто символы просто не видны из-за режима контрастности и подсветки.

Если это не помогло, то проверьте правильность подключения контактов, подключено ли питание подсветки. Если вы использовали отдельный i2c переходник, то проверьте еще раз качество пайки контактов.

Другой часто встречающейся причиной отсутствия текста на экране может стать неправильный i2c адрес. Попробуйте сперва поменять в скетче адрес устройства с 0x27 0x20 или на 0x3F. У разных производителей могут быть зашиты разные адреса по умолчанию. Если и это не помогло, можете запустить скетч i2c сканера, который просматривает все подключенные устройства и определяет их адрес методом перебора. Пример скетча i2c сканера .

Если экран все еще останется нерабочим, попробуйте отпаять переходник и подключить LCD обычным образом.

Заключение

В этой статье мы рассмотрели основные вопросы использования LCD экрана в сложных проектах ардуино, когда нам нужно экономить свободные пины на плате. Простой и недорогой переходник i2c позволит подключить LCD экран 1602, занимая всего 2 аналоговых пина. Во многих ситуациях это может быть очень важным. Плата за удобство – необходимость в использовании дополнительного модуля – конвертера и библиотеки. На наш взгляд, совсем не высокая цена за удобство и мы крайне рекомендуем использовать эту возможность в проектах.

При создании собственного устройства не редко возникает необходимость оперативного вывода разнообразной информации. Например, если вы создаёте контроллер умного дома, то разумно оснастить прибор устройством вывода, позволяющим быстро узнать текущее состояние систем. Лучшим решением является жидкокристаллический дисплей. Энергопотребление при отключённой подсветке минимально а работа с дисплеем предельно проста и не требует сильного вмешательства в код программы. Фактически, вывод информации на ЖК дисплей не многим отличается от вывода в серийный порт. В статье рассмотрено подключение знакогенерирующего дисплея на базе популярного чипа HD44780 к контроллеру Arduino.

Как работает жидкокристаллический текстовый дисплей

Для понимания некоторых нюансов полезно знать как работает знакогенерирующий дисплей. Особенностью работы дисплеев такого типа является наличие своего контроллера с собственной памятью. DDRAM — память дисплея. Для вывода символа на экран необходимо загрузить символ в ячейку памяти, а затем передать команду на отображение ячейки памяти. При передаче символы кодируются ASCII кодами. Например, при записи в память кода 0×31 на дисплей будет выведен символ «1 ». Соответствие кода символа его отображению на экране (т.е. «картинке» символа) хранится в памяти CGROM. CGROM не изменяемая память. Поэтому, дисплей может отображать только те символы, которые «зашиты» в контроллер. Именно поэтому не каждый дисплей способен отображать, например, русские символы. Дисплеи, продающиеся в нашем магазине, к сожалению, не русифицированы. Есть ещё CGRAM память. Она изменяемая. Мы можем создавать собственные символы и отображать их на дисплее. Стоит учитывать, что можно создать не более восьми символов.

Вся эта «подкапотная» работа важна только для понимания некоторых нюансов. Для Arduino существует простая и понятная библиотека, которая выполняет за вас всю черновую работу, позволяя контролировать вывод на дисплей легко и просто.

Подключение жидкокристаллического дисплея к Arduino

Для подключения дисплея его, разумеется, нужно установить на макетную плату. Обратите внимание: дисплеи, продающиеся у нас в магазине продаются без припаянного штырькового разъёма. Если вы хотите получить дисплей сразу готовый к установке на макетку, отметьте галочку «припаять разъём» на странице товара и мы припаяем разъём для вас. Передача данных на дисплей может быть организована двумя способами: по 4 или по 8 бит за раз. Соответственно, потребуется либо 4, либо 8 выводов Arduino. На практике, выигрыша в скорости при использовании восьмибитного интерфейса не будет. Поэтому, нам потребуется только 4 цифровых вывода для передачи данных. Ещё 3 вывода потребуются для задания режима работы дисплея. Итого для подключения дисплея понадобится всего 7 цифровых выходов контроллера. Контакты на дисплее подписаны, что позволит не запутаться при подключении:

Выводы нумеруем слева направо:

  • 1-(VSS ) Земля дисплея. Подключается к рельсе земли.
  • 2-(VDD ) Питание дисплея. Подключается к рельсе питания.
  • 3-(VO ) Вход потенциометра (входит в комплект). С помощью потенциометра регулируется контрастность дисплея. К выводу дисплея подключается средний выход потенциометра.
  • 4-(RS ) Вход «командного» сигнала. Подключается к любому цифровому выводу Arduino. В примере подключён к выводу №12.
  • 5-(RW ) Устанавливает режим «чтения» или «записи». Мы собираемся записывать. Подключаем контакт к земле.
  • 6-(E ) Enable. Ещё один «командный» вывод. Когда на вывод подаётся единица, дисплей выполняет переданную ранее команду. Подключается к любому цифровому выводу. В примере подключен к выводу №11.
  • 7-10 (D0-D3 ) оставляем не подключёнными. Это контакты передачи данных, который используются в восьмибитном интерфейсе. Нам не нужны.
  • 11-14 (D4-D7 ) Контакты для передачи данных в четырёхбитном режиме. Подключаются опять таки к любым цифровым выводам. В примере подключены соответственно к 5,4,3 и 2 выводам (D4 к 5 выводу, D5 к 4 и т.д.).
  • 15 (A ) Анод светодиода подсветки. Токоограничительный резистор уже установлен в дисплее, поэтому анод подключается просто к рельсе питания. Поскольку в подсветке используется самый обычный светодиод, вы можете подключить его к любому выводу, поддерживающему и управлять яркостью подсветки программно.
  • 16 (K ) Катод подсветки. Подключается к рельсе земли.

Визуальная схема подключения:

Программирование

Вместе с Arduino IDE поставляется прекрасная библиотека для жидкокристаллических дисплеев - LiquidCrystal . Библиотека содержит примеры, полностью раскрывающие возможности экрана. Для начала воспользуйтесь стандартным примером «HelloWorld» (Файл -> Примеры -> LiquidCrystal -> HelloWorld) или загрузите в плату следующий код:

/* *RS вывод дисплея к 12 выводу arduino *Enable вывод дисплея к 11 выводу arduino *D4 вывод дисплея к 5 выводу arduino *D5 вывод дисплея к 4 выводу arduino *D6 вывод дисплея к 3 выводу arduino *D7 вывод дисплея к 2 выводу arduino *R/W вывод дисплея к земле *Выход потенциометра к VO выводу дисплея */ // подключаем библиотеку: #include ; // Инициализируем дисплей // Перечисляем выводы arduino к которым подключены // RS, E, D4, D5, D6, D7 контакты дисплея LiquidCrystal lcd(12, 11, 5, 4, 3, 2); void setup() { // Указываем количество столбцов и строк дисплея: lcd.begin(16, 2); // Выводим сообщение на дисплей. lcd.print("hello, world!"); } void loop() { // устанавливаем курсор в 0 (нулевой) столбец первой строки // фактически курсор установится во вторую (нижнюю) строку // нумерация строк и столбцов начинается с нуля lcd.setCursor(0, 1); // выводим на дисплей количество секунд, // прошедших с момента загрузки платы: lcd.print(millis()/1000); }

*RS вывод дисплея к 12 выводу arduino

*Enable вывод дисплея к 11 выводу arduino

*D4 вывод дисплея к 5 выводу arduino

*D5 вывод дисплея к 4 выводу arduino

*D6 вывод дисплея к 3 выводу arduino

*D7 вывод дисплея к 2 выводу arduino

*R/W вывод дисплея к земле

*Выход потенциометра к VO выводу дисплея

// подключаем библиотеку:

#include ;

// Инициализируем дисплей

// Перечисляем выводы arduino к которым подключены

// RS, E, D4, D5, D6, D7 контакты дисплея

void setup () {

// Указываем количество столбцов и строк дисплея:

lcd . begin (16 , 2 ) ;

// Выводим сообщение на дисплей.

lcd . print ("hello, world!" ) ;

void loop () {

// нумерация строк и столбцов начинается с нуля

lcd . setCursor (0 , 1 ) ;

// выводим на дисплей количество секунд,

// прошедших с момента загрузки платы:

lcd . print (millis () / 1000 ) ;

После загрузки этого кода в плату Arduino на экране отобразится надпись «hello, world!»(англ. «привет, Мир!» ) на первой строке и таймер, отсчитывающий секунды на второй строке.

Как обычно и бывает, код простой и понятный. Однако, мы всё же разберём его более подробно:

  • LiquidCrystal lcd (12, 11, 5, 4, 3, 2) - эта строка создаёт объект дисплея, с которым мы будем работать в будущем. В скобках в качестве аргументов передаются номера пинов, к которым подключены контакты дисплея. Соответственно: RS, E, D4, D5, D6, D7. Как уже отмечалось выше, номера выводов при подключении можно выбирать совершенно произвольно.
  • lcd.begin (16, 2) - здесь мы настроили размеры дисплея. В данном примере 16 столбцов и 2 строки. Для нашего дисплея 20Х4 эта строчка выглядела бы так: lcd.begin (20, 4).
  • lcd.print («hello, world!») - выводит текст на дисплей. После указания размера дисплея (lcd.begin) курсор устанавливается в левый верхний угол дисплея. Поэтому, этот текст будет выведен на первой (верхней) строке слева.
  • lcd.setCursor (0, 1) - устанавливает курсор на указанную позицию. В данном случае указана крайняя левая позиция второй строки. В скобках задаётся номер столбца, затем номер строки. И строки и столбцы нумеруются с нулевой позиции. Таким образом: lcd.setCursor(0, 0) - установит курсор в левый верхний угол, lcd.setCursor(15, 0) - правый нижний.
  • lcd.print (millis()/1000) - уже описано выше. Здесь вместо текста в качестве параметра передаётся формула для вычисления. Результат выводится на экран.

Теперь, когда мы разобрались с простейшим примером, можно перейти к примерам посложнее. А если вы уже всё поняли и готовы купить ЖК дисплей, то я собрал для вас ссылки на проверенных мной китайских продавцов дисплеев:

Символьные ЖК дисплеи

Размер дисплея (столбцы*строки) Цвет подстветки Статус
20*4 Синий проверено
20*4 Жёлтый проверено
16*2 Синий проверено
16*2 Жёлтый проверено
16*2 Зелёный проверено

Обзор других примеров библиотеки LiquidCrystal

В стандартных примерах, поставляющихся вместе с библиотекой LiquidCrystal можно найти следующие скетчи:

    • Autoscroll - демонстрирует возможность прокрутки текста в автоматическом режиме. Некое подобие бегущей строки. При выводе символа предыдущие символы сдвигаются. Таким образом, новый символ выводится на одном и том же месте.

    • Blink - демонстрирует возможность включить отображение мигающего курсора в виде прямоугольника.

    • Cursor - демонстрирует возможность включить отображение курсора в виде мигающей горизонтальной черты.

    • CustomCharacter - показана возможность создания собственных символов для отображения их на дисплее. Кстати, в этом скетче ошибка. Подробности ниже.

    • Display - показывает способ «выключать» дисплей. То есть показывать или скрывать выведенный текст.

    • Scroll - демонстрирует возможность прокрутки текста в ручном режиме.

    • SerialDisplay - отображает на экране текст, напечатанный в окне монитора порта (т.е. текст, передающийся через серийный порт).
    • setCursor - заполняет дисплей буквами, демонстрируя возможность установки курсора в любую позицию экрана.
    • TextDirection - демонстрирует возможность изменять направление вывода текста (с права налево или слева направо).

Рассмотрим более подробно процедуры, возможности которых демонстрируют эти примеры:

lcd.autoscroll()

После вызова этой процедуры, текст на экране будет автоматически прокручиваться. Для остановки прокрутки, следует вызвать lcd.noAutoscroll() .

lcd.blink()

После вызова процедуры курсор примет вид мигающего прямоугольника. Для отключения следует вызвать lcd.noBlink()

lcd.cursor()

После вызова процедуры курсор примет вид мигающей горизонтальной черты. Для отключения следует вызвать lcd.noСursor() . Курсор снова станет невидимым.

lcd.createChar()

Процедура загружает в изменяемую таблицу символов экрана (в память CGRAM) символ, описанный в виде байтового массива. В качестве аргумента передаётся номер символа и массив байт, описывающий символ. Остановимся на этом более подробно. Внести в память дисплея можно не более восьми символов. Для добавления своего символа нужно:

  1. Создать байтовый массив, описывающий символ.
  2. Записать символ в память дисплея, присвоив ему номер в таблице символов. Символы нумеруются в диапазоне от нуля до семи.
  3. Вывести символ на экран с помощью процедуры lcd.write() (не путать с lcd.print() ), в качесте аргумента которой передать номер символа.

Баг среды разработки и особенности библиотеки вылились в невозможность вывести на экран символ под номером 0 (ноль). Компилятор повстречав строку lcd.write(0) выдаст ошибку: «call of overloaded ‘write(int)’ is ambiguous «. Именно такая строка встречается в примере CustomCharacter библиотеки. При попытке скомпилировать стандартный пример, вы получите ошибку:

CustomCharacter.ino: In function ‘void setup()’: CustomCharacter:115: error: call of overloaded ‘write(int)’ is ambiguous /home/nazarovd/arduino-1.0.5/libraries/LiquidCrystal/LiquidCrystal.h:82: note: candidates are: virtual size_t LiquidCrystal::write(uint8_t) /home/nazarovd/arduino-1.0.5/hardware/arduino/cores/arduino/Print.h:49: note: size_t Print::write(const char*)

CustomCharacter . ino : In function ‘void setup () ’:

CustomCharacter : 115 : error : call of overloaded ‘write (int ) ’is ambiguous

/ home / nazarovd / arduino - 1.0.5 / libraries / LiquidCrystal / LiquidCrystal . h : 82 : note : candidates are : virtual size_t LiquidCrystal :: write (uint8_t )

/ home / nazarovd / arduino - 1.0.5 / hardware / arduino / cores / arduino / Print . h : 49 : note : size_t Print :: write (const char * )

Для устранения ошибки достаточно изменить строку lcd.write(0 ) на lcd.write((byte)0 ).
Теперь небольшой пример по созданию своего символа. Давайте выведем на дисплей символ рубля .

// Подключаем библиотеку #include ; // Инициализируем дисплей LiquidCrystal lcd(12, 11, 5, 4, 3, 2); // Описываем свой символ. // Просто "рисуем" символ единицами // Единицы при выводе на экран окажутся закрашенными точками, нули - не закрашенными byte rubl = { 0b00000, 0b01110, 0b01001, 0b01001, 0b01110, 0b01000, 0b11110, 0b01000, }; void setup() { // записываем свой символ в память экрана // аргументами передаём номер символа // и байтовый массив, описывающий наш символ lcd.createChar(0, rubl); // настраиваем дисплей lcd.begin(16, 2); } void loop() { // устанавливаем курсор в левый верхний угод экрана lcd.setCursor(0,0); // выводим символ с номером ноль на экран lcd.write((byte)0); // ничего не делаем 10 секунд delay(10000); }

// Подключаем библиотеку

#include ;

// Инициализируем дисплей

LiquidCrystal lcd (12 , 11 , 5 , 4 , 3 , 2 ) ;

LCD дисплеи размерности 1602, на базе контроллера HD44780, являются одними из самых простых, доступных и востребованных дисплеев для разработки различных электронных устройств. Его можно встретить как и в устройствах собранных на коленке, так и в промышленных устройствах, таких, как например, автоматы для приготовления кофе. На базе данного дисплея собраны самые популярные модули и шилды в тематике Arduino такие как и .

В данной статье мы расскажем как его подключить к Arduino и вывести информацию.

Используемые компоненты (купить в Китае):

. Управляющая плата

. Соединительные провода

Данные дисплеи имеют два исполнения: желтая подсветка с черными буквами либо, что встречается чаще, синюю подсветку с белыми буквами.

Размерность дисплеев на контроллере HD44780 может быть различной, управляться они будут одинаково. Самые распространенные размерности 16x02 (т.е. по 16 символов в двух строках) либо 20x04. Разрешение же самих символов - 5x8 точек.

Большинство дисплеев не имеют поддержку кириллицы, имеют её лишь дисплеи с маркировкой CTK. Но данную проблему можно попытаться частично решить (продолжение в статье).

Выводы дисплея:

На дисплее имеется 16pin разъем для подключения. Выводы промаркированы на тыльной стороне платы.

1 (VSS) - Питание контроллера (-)
2 (VDD) - Питание контроллера (+)
3 (VO) - Вывод управления контрастом
4 (RS) - Выбор регистра
5 (R/W) - Чтение/запись (режим записи при соединении с землей)
6 (E) - Еnable (строб по спаду)
7-10 (DB0-DB3) - Младшие биты 8-битного интерфейса
11-14 (DB4-DB7) - Старшие биты интерфейса
15 (A) - Анод (+) питания подсветки
16 (K) - Катод (-) питания подсветки

Режим самотестирования:

Перед попытками подключения и вывода информации, было бы неплохо узнать рабочий дисплей или нет. Для этого необходимо подать напряжение на сам контроллер (VSS и VDD ), запитать подсветку (A и K ), а также настроить контрастность.

Для настройки контрастности следует использовать потенциометр на 10 кОм. Каким он будет по форме - не важно. На крайние ноги подается +5V и GND, центральная ножка соединяется с выводом VO

После подачи питания на схему необходимо добиться правильного контраста, если он будет настроен не верно, то на экране ничего не будет отображаться. Для настройки контраста следует поиграться с потенциометром.

При правильной сборке схемы и правильной настройке контраста, на экране должна заполниться прямоугольниками верхняя строка.

Вывод информации:

Для работы дисплея используется встроенная с среду Arduino IDE библиотека LiquidCrystal.h

Функционал библиотеки

//Работа с курсором lcd.setCursor (0, 0); // Устанавливаем курсор (номер ячейки, строка) lcd.home (); // Установка курсора в ноль (0, 0) lcd.cursor (); // Включить видимость курсора (подчеркивание) lcd.noCursor (); // Убрать видимость курсора (подчеркивание) lcd.blink (); // Включить мигание курсора (курсор 5х8) lcd.noBlink (); // Выключить мигание курсора (курсор 5х8) //Вывод информации lcd.print ("сайт" ); // Вывод информации lcd.clear (); // Очистка дисплея, (удаление всех данных) установка курсора в ноль lcd.rightToLeft (); // Запись производится справа на лево lcd.leftToRight (); // Запись производится слева на право lcd.scrollDisplayRight (); // Смещение всего изображенного на дисплее на один символ вправо lcd.scrollDisplayLeft (); // Смещение всего изображенного на дисплее на один символ влево //Информация полезная для шпионов:) lcd.noDisplay (); // Информация на дисплее становится невидимой, данные не стираются // если, в момент когда данная функция активна, ничего не выводить на дисплей, то lcd.display (); // При вызове функции display() на дисплее восстанавливается вся информация которая была

Сам же дисплей может работать в двух режимах:

8-битный режим - для этого используются и младшие и старшие биты (BB0- DB7)

4-битный режим - для этого используются и только младшие биты (BB4- DB7)

Использование 8-битного режима на данном дисплее не целесообразно. Для его работы требуется на 4 ноги больше, а выигрыша в скорости практически нет т.к. частота обновления данного дисплея упирается в предел < 10раз в секунду.

Для вывода текста необходимо подключить выводы RS, E, DB4, DB5, DB6, DB7 к выводам контроллера. Их можно подключать к либым пинам Arduino, главное в коде задать правильную последовательность.

Пример программного кода:

#include LiquidCrystal lcd(7, 6, 5, 4, 3, 2); void setup (){ lcd.begin (16, 2); // Задаем размерность экрана lcd.setCursor (0, 0); lcd.print ("Hello, world!" ); // Выводим текст lcd.setCursor (0, 1); // Устанавливаем курсор в начало 2 строки lcd.print ("сайт" ); // Выводим текст } void loop (){ }

Создание собственных символов

С выводом текста разобрались, буквы английского алфавита зашиты в память контроллера внутри дисплея и с ними проблем нет. А вот что делать если нужного символа в памяти контроллера нет?

Не беда, требуемый символ можно сделать вручную (всего до 7ми символов). Ячейка, в рассматриваемых нами дисплеях, имеет разрешение 5х8 точек. Все, к чему сводится задача создания символа, это написать битовую маску и расставить в ней единички в местах где должны гореть точки и нолики где нет.

В ниже приведенном примере нарисуем смайлик.

Пример программного кода

//Тестировалось на Arduino IDE 1.0.5 #include #include // Лобавляем необходимую библиотеку // Битовая маска символа улыбки byte smile = { B00010, B00001, B11001, B00001, B11001, B00001, B00010, }; LiquidCrystal lcd(7, 6, 5, 4, 3, 2); // (RS, E, DB4, DB5, DB6, DB7) void setup (){ lcd.begin (16, 2); // Задаем размерность экрана lcd.createChar (1, smile); // Создаем символ под номером 1 lcd.setCursor (0, 0); // Устанавливаем курсор в начало 1 строки lcd.print ("\1" ); // Выводим смайлик (символ под номером 1) - "\1" } void loop (){ }

Бонус

В комментариях участник сообщества скинул ссылку на генератор символов

  • igorka

      генератор символов по примеру выше,
      сделал потому что не слабо)

Жидкокристаллический дисплей (LCD) мод. 1602 (даташит) - отличный выбор для ваших проектов.

Первое, что радует - низкая цена. Второе - наличие готовых библиотек под Arduino. Третье - наличие нескольких модификаций, которые в том числе идут с различными подсветками (голубая, зеленая). В этой статье рассмотрим основы подключения данного дисплея к Arduino и приведем пример небольшого проекта для отображения уровня освещенности на дисплее с использованием фоторезистора.

Контакты и схема подключения LCD 1602 к Arduino

Контакты на этом дисплее пронумерованы от 1 до 16. Нанесены они на задней части платы. Как именно они подключаются к Arduino, показано в таблице ниже.

Табл. 1. Подключение контактов LCD 1620 к Arduino

Подключение 1602 к ArduinoЕсли дисплей 1602 питается от Arduino через 5-ти вольтовой USB-кабель и соответствующий пин, для контакта контраста дисплея (3-й коннектор – Contrast) можно использовать номинал 2 кОм. Для Back LED+ контакта можно использовать резистор на 100 Ом. Можно использовать и переменный резистор – потенциометр для настройки контраста вручную.

На основании таблицы 1 и схемы, приведенной ниже, подключите ваш жидкокристаллический дисплей к Arduino. Для подключения вам понадобится набор проводников. Желательно использовать разноцветные проводники, чтобы не запутаться.

Табл. 2. Предпочтительные цвета проводников

Схема подключения LCD дисплея 1602 к Arduino:


Базовый пример программы для работы LCD 1602 с Arduino

В примере используются 0, 1, 2, 3, 4, и 5 пины Arduino для подключения соответствующих пинов 4, 6, 11, 12, 13 и 14 с дисплея 1602 (смотри табл. 1). После этого в коде для Arduino мы инициализируем lcd() следующим образом:

LiquidCrystal lcd(0, 1, 2, 3, 4, 5);

Этот кусок кода объясняет Arduino, как именно подключен LCD дисплей.

Весь соурс файл проекта метеостанции, в которой используется дисплей LCD 1602 можно скачать по этой ссылке .

LCD 1602A, Arduino и датчик освещенности (фоторезистор)

В примере мы рассмотрим подключение модификации дисплея - 1602A и фоторезистора. В результате данного проекты мы сможем отображать на дисплее числовые значения, пропорциональные интенсивности освещения.


Данный пример будет хорошим стартом для начинающих разбираться с Arduino. Стоит обратить внимание, что у дисплея 1602 существуют различные модификации. Соответственно, расположение контактов на них могут несколько отличаться.

Необходимые материалы

  • 1 Arduino UNO;
  • 1 макетная плата (63 рельсы);
  • 1 датчик освещенности (фоторезистор);
  • 1 потенциометр на 50 кОм;
  • 1 LCD дисплей 1602A;
  • 1 резистор на 10кОм;
  • 1 рельса коннекторов (на 16 пинов);
  • 1 USB кабель.

LCD Дисплей 1602A

Дисплеи, как правило, продаются без распаянных коннекторов. То есть, паяльник в руках придется подержать. Вам понадобится 16 пинов. Запаивайте со стороны коротких ног, длинные оставляйте для дальнейшего подключения к плате или другим периферийным устройствам.

После распайки можете устанавливать дисплей на макетной плате. Желательно, на самой нижней дорожке, чтобы у вас осталась возможность соединять дисплей через дополнительные коннекторы с платой.

Подключение дисплея 1602A к Arduino

Первое что необходим о – запитать дисплей. Подключите два кабеля от +5 вольт и земли к соответствующим рядам плюс-минус на макетной плате.

Подключите: пин на 5 вольт (5V) с Arduino к одной из дорожек макетной платы.

Подключите: пин Земля (GND) Arduino к другой дорожек (макетной платы).

После этого подключаем питание экрана и его подсветку к дорожкам, на макетной плате, на которых у нас получается 5 вольт и минус.

Подключите: дорожку GND (минус) на макетной плате к 1 пину на LCD экране (он обозначен как VSS).

Подключите: дорожку 5 вольт (плюс) на макетной плате ко 2 пину на LCD экране (он обозначен как VDD).

Подключите: дорожку 5 вольт (плюс) на макетной плате к 15 пину на LCD экране (он обозначен как A).

Подключите: дорожку GND (минус) на макетной плате к 16 пину на LCD экране (он обозначен как K).

Подключаем нашу Arduino к персональному компьютеру через USB-кабель и вуаля! Экран должен включиться.

Следующий шаг – подключение потенциометра для регулировки контрастности дисплея. В большинстве гайдов, используется потенциометр на 10 кОм, но 50 кОм тоже подойдет. Из-за большего диапазона значений сопротивлений на выходе потенциометра, более точная настройка становится сложнее, но для нас в данном случае это не критично. Установите потенциометр на макетной плате и подключите три его пина.

Подключите: первый пин на потенциометре к минусу на макетке.

Подключите: средний пин потенциометра к 3 пину на дисплее (он обозначен как V0).

Подключите: третий пин на потенциометре к плюсу на макетке.

После подачи питания на плату через USB-кабель, на дисплее первый ряд должен заполниться прямоугольниками. Если вы их не увидели, немного проверните ручку потенциометра слева направо, чтобы отрегулировать контраст. В дальнейшем, когда мы будем отображать числовые значения на экране, вы сможете более точно отрегулировать контрастность. Если ваш дисплей выглядит примерно так, вы все делаете верно:

Продолжим. Теперь нам надо обеспечить обмен данными между Arduino и LCD дисплеем 1602A для отображения символов.

Для этого подключите 4 пин дисплея (RS) к 7 пину Arduino (желтый коннектор). 5 пин дисплея (RW) – к ряду пинов земля на макетке (черный кабель).

6 пин дисплея (E) – к 8 пину Arduino (ШИМ).

11 пин дисплея (D4) – к 9 пину Arduino (ШИМ).

12 пин дисплея (D5) – к 10 пину Arduino (ШИМ).

13 пин дисплея (D6) – к 11 пину Arduino (ШИМ).

14 пин дисплея (D7) – к 12 пину Arduino (ШИМ).

Программа для Arduino IDE – отображение надписи на дисплее 1602A

Представленный ниже кусок кода достаточно скопипастить в Arduino IDE и загрузить на плату:

#include <LiquidCrystal.h>

LiquidCrystal lcd(7, 8, 9, 10, 11 , 12);

lcd.begin(16, 2);

lcd.setCursor(0,1);

lcd.write("LIGHT: ");

После загрузки программы на плату, на дисплее во второй строке отобразится следующая надпись:

Своеобразный "hello world!" на LCD 1602A запущен. Я вас поздравляю.

Подключаем фоторезистор и заливаем всю программу в Arduino

Теперь подключим фоторезистор. Подключите три провода к свободным рельсам на макетной плате (условно пронумеруем их 1, 2, 3). Оставьте в рельсах немного места для самого датчика освещенности и резистора.

Рельсу GND с макетной платы подключаем к рельсе 1. A0 (аналоговый вход) с Arduino - к рельсе 2. 5 вольт с макетной платы - к рельсе 3.

Дальше подключаем наш датчик и резистор к подготовленным рельсам. Какие именно ноги идут к земле, а какие - к питанию для нашего датчика освещенности и резистора неважно (в отличие от, например, светодиода, в котором есть катод и анод). Так что тут не перепутаете.

Датчик освещенности подключаем к рельсе 1 и рельсе 2. Резистор – к рельсе 2 и к рельсе 3.

Теперь вернемся к нашей программе и добавим несколько строк в пустующее пока что тело функции loop():

int sensorValue = analogRead(A0);

lcd.setCursor(7,1);

lcd.print(sensorValue);

После заливки на Arduino окончательной версии нашей программы, на дисплее будут отображаться текущие значения уровня освещенности.

© 2024 Вопросы и ответы