Вконтакте Facebook Twitter Лента RSS

Защита от постоянного напряжения своими руками. Радио для всех - защищаем динамики ас

Устройство для защиты от выхода из строя динамиков акустических систем

Часто, при включении усилителя, мы слышим неприятный "хлопок" в динамиках своей акустики. Если регулятор громкости был близок к максимуму громкости, то мы рискуем "спалить" динамики в своих АС. Для того, чтобы защитить динамики и собственные уши от "хлопков" переходных процессов в момент включения, необходимо либо принять специфические решения в схемотехнике самого выходного каскада усилителя, либо просто обеспечить подключение акустических систем к выходу усилителя с небольшой задержкой, достаточной для бесшумного пуска усилка...

Предлагаемое устройство обеспечивает задержку по времени в момент включения усилителя (время задержки регулируется от 1 до 6 секунд) и обеспечивает защиту дорогостоящих динамиков при выходе из строя - пробое транзисторов выходного каскада или специализированных микросхем - аудио усилителей. В случае пробоя в выходном каскаде акустические системы будут мгновенно отключены, останутся целыми невредимыми.

Данное устройство защиты может использоваться совместно с любым стерео усилителем мощности с напряжениями питания выходного каскада до ±50В. Само устройство питается от однополярного источника питания напряжением 12В. Защитное устройство собрано на плате размерами 70х45 мм.

Подключение проводов от усилителя, к разъёмам подключения АС и к источнику питания осуществляется при помощи винтовых клемм установленных на плате. Максимальный ток, коммутируемый реле составляет 10А. По заказу возможно изготовление устройств защиты на токи до 30А. Данным устройством можно дооборудовать любой существующий усилитель либо применить в "новострое".

Стоимость собранного и проверенного устройства: 160 грн.

Стоимость набора для сборки: 120 грн.

Стоимость печатной платы с маской и маркировкой: 55 грн.

Представленное в данной статье устройство предназначено для защиты акустической системы (предотвращения повреждения акустической системы), подключенной к усилителю мощности звуковой частоты в случае возникновения аварийной ситуации (в случае появления постоянного напряжения на выходе усилителя мощности). Кроме того, данная схема обеспечивает задержку подключения акустической системы к усилителя для устранения слышимых переходных процессов (хлопков динамиков и других неприятных звуков) при включении усилителя.

Принцип работы данного устройства не нов и предельно прост: при отсутствии опасного постоянного напряжения на выходе усилителя (входе защиты), акустическая система с помощью контактов реле, через определенный короткий промежуток времени, подключается к выходу усилителя, в случае появления опасного постоянного напряжения на выходе усилителя реле размыкает свои контакты и акустическая система отключается от выхода усилителя.

Скелет схемы придуман не мной, его в разных вариациях часто можно встретить в промышленных аппаратах и за долгое время подобные схемы очень хорошо себя зарекомендовали.

Кратко перечислю особенности и технически характеристики данной схемы:
- независимая защита для каждого из двух каналов усилителя. При аварии в одном из каналов усилителя отключится только неисправный канал.
- встроенный стабилизатор напряжения позволяет питать устройство защиты непосредственно от плюсовой шины питания усилителя мощности.
- допустимый диапазон напряжений питания (+Vc) от 15 до 50В (при использовании реле с катушкой на 12В) или от 30 до 90В (при использовании реле с катушкой на 24В).
- время срабатывания защиты (отключения акустической системы) при появлении постоянного напряжения на выходе усилителя (на входе защиты):
0,7 сек (при постоянном напряжении на входе защиты 5В);
0,25 сек (при постоянном напряжении на входе защиты 15В);
0,15 сек (при постоянном напряжении на входе защиты 25В);
0,07 сек (при постоянном напряжении на входе защиты 50В).
- минимальное постоянное напряжение на выходе усилителя (входе защиты) необходимое для отключения акустической системы +1В / -3,5В.
- время задержки подключения акустической системы к выходу усилителя с момента подачи напряжения питания - 3 сек.
- автоматическое подключение акустической системы к выходу УМЗЧ после исчезновения на его выходе опасного постоянного напряжения.
- время подключения акустической системы после исчезновения опасного постоянного напряжения на выходу УМЗЧ - 3 сек.
- моментальное отключение акустической системы от выхода усилителя мощности в случае обесточивания или неисправности устройства защиты.

Рассмотрим принцип действия схемы на примере одного из каналов устройства защиты (верхнего по схеме). При нулевом постоянном напряжении на входе схемы, оба входных транзистора VT2 и VT4 полностью закрыты. При подаче питания, начинает заряжаться конденсатор С3 через резистор R4, при достижении на обкладках конденсатора напряжения примерно в 1,2-1,5В (спустя примерно 3 сек после подачи питания), открывается транзистор VT6 и на катушке реле K1 появляется напряжение равное напряжению на выходе стабилизатора напряжения (VT1), контакты реле К1.1 замыкаются и выход усилителя соединяется с акустической системой. В случае аварийной ситуации, когда на входе схемы появляется постоянное напряжение величиной более минимального напряжения срабатывания устройства защиты, открывается один из транзисторов (VT2 или VT4) в зависимости от знака постоянного напряжения на входе - плюс или минус. Открывшийся транзистор шунтирует собой конденсатор С3 и база-эмиттерный переход транзистора VT6, что приводит к его закрытию, исчезновению напряжения на катушке реле и размыканию контактов К1.1. Акустическая система отключается от выхода усилителя мощности. Как только постоянное напряжение на входе устройства защиты опускается ниже минимального значения напряжения срабатывания защиты, транзисторы VT2 и VT4 закрываются, заряжается С3, транзистор VT6 открывается, на катушке реле появляется управляющее напряжение и акустическая система снова подключается к выходу усилителя мощности. Транзистор VT1 вместе с R2 и VD1, образуют простейший стабилизатор напряжения который дает возможность запитывать устройство защиты от плюсовой шины блока питания усилителя мощности или любого другого источника питания с напряжением от 15 до 90В.

В зависимости от величины имеющегося напряжения источника питания, которое будет использовано для питания защиты, целесообразно выбирать реле с катушкой либо на 12, либо на 24В. Это необходимо для снижения рассеиваемой мощности на транзисторе стабилизатора напряжения (VT1), который обязательно должен быть установлен на небольшом теплоотводе. Так при напряжении питания от 15 до 30В, необходимо использоваться реле с катушкой рассчитанной на 12В, а при напряжении питания от 50В и выше - реле с катушкой рассчитанной на 24В. При использовании источника питания с напряжением от 30 до 50В, допускается использовать реле с катушкой как на 12В, так и на 24В. При использовании реле с катушкой рассчитанной на 24В, в обязательном порядке необходимо заменить стабилитрон VD1 (1N4743, 13В), на стабилитрон с напряжением стабилизации 24В, например на 1N4749.

Рассмотрим схему сопряжения устройства защиты с платами усилителей мощностей, блоком питания и подключаемой акустической системой.

Все довольно наглядно и просто. Единственное насчет чего может возникнуть вопрос: зачем на печатной плате защиты две клеммы GND и какую из них использовать для подключения к блоку питания? Использовать можно любую из них.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

BD139

1 В блокнот
VT2-VT5 Биполярный транзистор

2N5551

4 В блокнот
VT6, VT7 Биполярный транзистор

KSP13

2 MPSA13 В блокнот
VD1 Стабилитрон

1N4743A

1 1N4749 (24В) для реле на 24В В блокнот
VD2, VD3 Выпрямительный диод

1N4148

2 В блокнот
С1, С2 100мкФ 25В 2 В блокнот
С3, С4 Электролитический конденсатор 220мкФ 25В 2 В блокнот
R1, R3 Резистор

Защита акустических систем (АС) просто необходима, и если ее не использовать, то можно лишиться своей акустики из-за неисправности усилителя НЧ. Существует множество схем обеспечивающих защиту АС. В этой статье представлена рабочая, проверенная временем и любителями звука схема, которая представляет приближенную копию защиты акустической системы усилителя БРИГ.

Схема обеспечивает защиту от напряжения постоянного тока на выходе усилителя НЧ (в случае его неисправности), а также обеспечивает задержку подключения АС до тех пор, пока не закончатся все переходные процессы в усилителе и блоке питания. Без такой задержки, при включении усилителя в сеть, в АС слышны щелчки, хлопки, звон и т.д.

Основные характеристики защиты акустической системы

Напряжение питания постоянным током от +27В до +65В.

Время задержки подключения АС от 1 секунды до 3 секунд.

Чувствительность по напряжению постоянного тока на входе защиты ±1,5В.

Схема защиты акустической системы

На элементах VD5, VD6, VT5, R13 собран стабилизатор напряжения, который обеспечивает широкий диапазон питающих напряжений. На VT5 необходимо установить небольшой радиатор. Диоды VD3 и VD4 необходимы для исключения помех от самоиндукции обмотки реле во время коммутации. Транзисторы VT3, VT4 являются управляющими для обмоток реле K1 и K2. Диоды VD1 и VD2 защищают транзисторы VT1 и VT2 от пробоя, в случае появления на входе схемы отрицательного напряжения. Электролитические конденсаторы C3 и С4 напрямую влияют на время задержки, чем больше емкость, тем больше время.

Элементы схемы

Все резисторы должны быть мощностью 0,25Вт, резистор R13 можно установить на 0,5Вт, особенно при напряжении питания схемы от 40В и выше. Электролитические конденсаторы должны быть рассчитаны на напряжение в полтора раза больше чем напряжение питания схемы (я установил на 63В). Хотя только на C5 присутствует напряжение питания схемы, а на остальных электролитах единицы Вольт.

Вместо BDX53 можно применить BD875, КТ972. Расположение выводов у всех транзисторов разное, поэтому будьте внимательны в случае замены.

Транзистор 2n5551 является очень распространенным и присутствует на многих прилавках, но все же его можно заменить на КТ3102, BC546, BC547, BC548. Расположение выводов также разное.



Универсальный блок защиты АС выполнен на малогабаритных деталях и может быть встроен в любой усилитель, не имеющий подобной защиты. Особенность этого блока - в применении встроенного питания от сети, надёжных электромагнитных реле и светодиодной индикации появления постоянного напряжения на выходе усилителя. Устройство обеспечивает стабильную задержку и защиту даже после кратковременного пропадания сетевого напряжения.

Известно, что при подаче питания на усилитель в акустической системе (АС) может возникнуть громкий щелчок (хлопок). Чтобы устранить это явление, необходимо подключать нагрузку к выходу УМЗЧ с некоторой задержкой, достаточной для завершения всех переходных процессов (обычно 1...3 с) . При отключении же питания АС должна отключиться до момента, когда накопительные конденсаторы фильтра питания усилителя заметно разрядятся (более чем на 20 %). В противном случае процесс выключения тоже может создать неприятные призвуки или щелчки.

Представленный модуль реализует функции бесшумного включения и выключения усилителя (фактически АС), а также позволяет защитить НЧ-головки АС при появлении постоянного напряжения на выходе УМЗЧ, связанного с его аварийной работой или выходом из строя.

Технические характеристики

Напряжение питания, В...........190...264

Напряжение срабатывания защиты, В................0,6...0,7

Время задержки включения/перезапуска, с...........2,5...3

Время срабатывания защиты (U вх = 2 В), с, не более 1,4

Время срабатывания защиты (U вх = 20 В), с, не более 0,25

Время выключения модуля, с, не более..................0,25

Потребляемая мощность, Вт, не более..................2,5

Максимальный коммутируемый ток, А....................12

С реализацией задержки и защиты АС вопросов не возникает. Но как реализовать быстрое отключение АС при пропадании (относительно кратковременном) сетевого напряжения, но дос-таточном для возникновения переходного процесса и щелчка? Есть два разумных варианта: использование информации о наличии переменного напряжения в одной из существующих вторичных обмоток трансформатора, питающего УМЗЧ (как это реализовано в микросхеме μРС1237 ), или использование отдельного трансформатора питания (либо от дополнительной обмотки трансформатора УМЗЧ) для узла защиты. Первый вариант накладывает определённые ограничения, сужая универсальность модуля. Второй же позволяет использовать в питании устройства сглаживающий конденсатор небольшой ёмкости, благодаря чему блок защиты гарантированно отключит АС быстрее, чем разрядятся конденсаторы в блоке питания УМЗЧ.

Очевидно, что второй вариант - более надёжный и простой в реализации,позволяющий подключить модуль практически к любому усилителю. Недостаток такого решения - более высокая стоимость за счёт применения дополнительного блока питания, но универсальность и надёжность здесь превалируют.

Схема устройства показана на рис. 1. Его входы нужно подключать к выходам каналов стереофонического УМЗЧ, а выходы - к нагрузкам (АС) соответствующих каналов. Общий провод модуля, громкоговорителей АС (или кроссовера) подключают к общему проводу усилителя непосредственно.

Рис. 1. Схема устройства

При подаче напряжения питания конденсатор C6 медленно заряжается через резистор R10 до 1,9 В (определяется соотношением сопротивления резисторов R10 и R11), что достаточно для открывания транзистора VT4. Срабатывают реле K1, K2, и нагрузка подключается к усилителю.

При возникновении на любом из входов устройства (контакты Х2а, ХЗа) постоянного напряжения более ±0,6...0,7 В открывается соответствующий транзистор (VT1 - для напряжения плюсовой полярности, VT2 - минусовой полярности), включая излучающий диод оптопары U1 или U2. Освещённый фототранзистор оптопары через резистор R8 разряжает конденсатор С6, и полевой транзистор VT4 закрывается, обесточивая реле. Свечение светодиода HL1 индицирует отключение АС и неисправность УМЗЧ. Резистор R8 ограничивает ток разрядки конденсатора С6, а резисторный делитель R4R5 обеспечивает искусственную среднюю точку питающего напряжения.

Большинство подобных устройств защиты и задержки включения АС имеют неприятный недостаток - отсутствие задержки при рестарте за короткий промежуток времени после отключения питания. Пример такой ситуации - кратковременное пропадание электричества в сети. Этот недостаток не позволяет получить должного уровня защиты АС и всей аппаратуры в целом, где применён такой узел. Для исключения этого недостатка введены элементы R9, С5, VT3. Эта цепь кратковременно срабатывает при пропадании и появлении напряжения питания, разряжая конденсатор С6, что и обеспечивает нормальный последующий старт узла защиты. Применение полевого транзистора VT4 с пониженным напряжением открывания (примерно 1,5 В) обеспечивает меньшее напряжение заряда С6, причём время рестарта практически равно времени первого включения. При сохранении постоянных времени зарядки-разрядки конденсатора С6 его ёмкость можно существенно уменьшить, соответственно увеличив сопротивление резисторов R8-R11. Ёмкость конденсатора С1 увеличивать не рекомендуется - она определяет скорость выключения блока защиты.

При номинальном сетевом напряжении 230 В и комнатной температуре 25 о С стабилизатор DA1 нагревается до 50...52 о С. При проверке на максимальном переменном напряжении 274 В (ограничено возможностями ЛАТРа) нагрев стабилизатора составил 64...65 о С - всё в пределах нормы. Если исключить резистор R1, то нижняя допустимая граница питания блока упадёт до 170 В, но при этом увеличится нагрев DA1 в среднем на 10...12 о С. Понятно, что это изменение целесообразно лишь для местности, где напряжение в сети всегда ниже номинального.

Если представить себе ситуацию, когда оба канала УМЗЧ выходят из строя, и в первом канале на выходе образуется напряжение одной полярности, а на втором - обратной полярности, равное по модулю напряжению на выходе первого канала (с разницей менее 0,6...0,7 В), то после суммирования через резисторы R2 и R3 получится напряжение, которого недостаточно для открывания транзистора VT1 или VT2. То есть система защиты не сработает, и это является недостатком (его можно преодолеть изменением сопротивления одного из этих резисторов на ±10 %). Но вероятность такого события пренебрежимо мала и является скорее примером гипотетического моделирования отказа.

Печатная плата (рис. 2), имеющая размеры 66x45 мм, выполнена на фольгированном стеклотекстолите и рассчитана на установку транзисторов в корпусах SOT-23, резисторов типоразмера 0805 (кроме резисторов R1 и R13 - 1206), конденсаторов C2, C5 типоразмера 0805 и диода VD2 в корпусе SMA. На фото рис. 3 показана смонтированная плата со стороны пайки деталей поверхностного монтажа.

Рис. 2. Печатная плата

Рис. 3. Смонтированная плата со стороны пайки деталей поверхностного монтажа

В качестве T1 применён маломощный трансформатор ТПК-2 с вторичной обмоткой на 12 В. Диодный мост может быть любой из серий DB103S-DB107S или MB2S-MB6S, для чего на печатной плате предусмотрены два посадочных места. Диод VD2 - любой с прямым током 1 А и обратным допустимым напряжением не менее 200 В.

Обмотки реле должны быть на ток потребления не более 30 мА (повышенной чувствительности) при напряжении 12 В. Можно было бы использовать одно реле с двумя парами контактов, но автору не удалось найти такого на коммутируемый ток более 8...10 А. Достоинство указанных на схеме реле TRU-12VDC-SB-CL в том, что они имеют на контактах напыление AgCdO (серебро-окись кадмия), устойчивое к механическому износу, и максимальный коммутируемый ток 12 А. Заменить их можно более доступными реле SRD (T73) 12VDС-L-S-С фирмы SONGLE, допускающими ток коммутации до 10 А.

Оптопары U1, U2 можно применить практически любые с соответствующей структурой, например, PS2501, PC817. Светодиод HL1 - любой, желательно красного цвета свечения, например, из серии АЛ307 или иные.

Транзисторы VT1-VT3 могут быть заменены любыми другими маломощными транзисторами соответствующей структуры и типоразмера. Возможно использование MMBT5551, MMBT4401 (VT1, VT3) и MMBT5401, MMBT4403 (VT2).

В качестве замены n-канального полевого транзистора (ПТ) VT4 с низким пороговым напряжением затвора (Gate Threshold Voltage) можно порекомендовать NTR4003N, IRLML2502. Если подобные замены недоступны, то допустимо применить иной n-канальный ПТ с изолированным затвором, ориентируясь на сопротивление открытого канала не более 3...5 Ом, максимальное напряжение сток-исток - не менее 20 В и максимальный ток стока - не менее 300 мА. В этом случае в схему потребуется внести следующие изменения: R8 = 75 Ом, R10 = R11 = 68 кОм, C6 = 47 мкФ на 16 В. Но следует помнить, что время задержки при быстром рестарте немного уменьшится. Так как пороговый уровень включения у различных ПТ может значительно отличаться, то, возможно, потребуется подкорректировать время задержки включения реле подбором пары резисторов R10, R11 из условия их равенства.

Плавкую вставку FU1 можно использовать на ток 0,16 или 0,25 А, например, отечественную ВП4-10 0,2 А, имеющую малые габариты и гибкие выводы для монтажа на плату. Клеммники X1-X3 - серии DG127, XY304 или аналогичные. Как видно из схемы, центральный контакт в X1 не используется. Это сделано для того, чтобы увеличить зазор между проводниками сетевого питания.

Собранное устройство (его фото на рис. 4) не нуждается в налаживании и работает сразу после подачи питания. Его конструкция повторена много раз, и высокая надёжность подтверждена длительной эксплуатацией.

Рис. 4. Собранное устройство

На рис. 5 представлена схема, позволяющая исключить малогабаритный трансформатор. В качестве примера показана упрощённая схема блока питания УМЗЧ с напряжением +/-30 В. При этом немного изменены как схема, так и способ подключения модуля к усилителю.

Рис. 5. Схема, позволяющая исключить малогабаритный трансформатор

Модуль имеет двухполярное питание через гасящие резисторы R8, R9, поэтому формирование искусственной средней точки не требуется (резисторы R4, R5 на рис. 2). Для большей эффективности реле включены последовательно и добавлен конденсатор (C4) в качестве фильтра питания.

На компонентах VD1, R5, C3 выполнен однополупериодный выпрямитель, напряжение с которого подаётся на оптопару U3. В исходном состоянии за счёт резистора R10 транзистор VT3 находится в режиме насыщения, шунтируя конденсатор С5 до тех пор, пока не появится напряжение на излучающем диоде оптопары U3, после чего VT3 закрывается и С5 начинает медленно заряжаться, открывая транзистор VT4. При этом общее время задержки подключения нагрузки достигает 2...2,5 с.

При выключении усилителя конденсатор С3 быстро разряжается, обесточивая оптопару U3. Транзистор VT3 открывается и разряжает конденсатор C5, вследствие чего отключаются реле с нагрузкой. Таким образом, реализуется механизм быстрого выключения с общим временем не более 0,3...0,5 с.

Последующий старт включения происходит с разряженным конденсатором C5, поэтому, в отличие от схемы на рис. 2, его принудительная разрядка не требуется.

В качестве VT4 можно применить n-канальный ПТ с пороговым напряжением открывания 2...5 В и максимальным током стока не менее 1 А, например, IRF510-IRF540, IRF610-IRF640. Выпрямительный диод VD1 - любой с обратным напряжением не менее 100 В и прямым током от 100 мА: SF12-SF16, 1 N4002-1N4007 и пр. При использовании реле с обмотками, потребляющими ток 50 мА, необходимо изменить номиналы резисторов R8, R9 на 330 Ом.

Примечание: Для повышения надёжности работы между базой и эмиттером транзистора VT3 (рис. 1) надо установить резистор сопротивлением 50...100 кОм.

Литература

1. Атаев Д. И., Болотников В. А. Функциональные узлы усилителей высококачественного звуковоспроизведения. - М.: Радио и связь, 1989, с. 120.

2. UPC1237. Protector IC for stereo power amplifier. - URL: http://www.unisonic.com. tw/datasheet/UPCI 237.pdf (21.03.16).


Дата публикации: 10.07.2016

Мнения читателей
  • Rymkin / 05.02.2019 - 03:06
    Здравствуйте! Можно ли применить трансформатор на 15 вольт? В статье опечатка,"Заменить их можно более доступными реле SRD (T73) 12VDС-L-S-С фирмы SONGLE, допускающими ток коммутации до 10 А.", на самом деле марка реле SRD (T73) 12VDС-SL-С.


В интернете сейчас представлено огромное количество различных усилителей звука, на любой вкус и цвет, под любые нужны. Как известно, даже самые надёжные усилители имеют свойство выходить из строя, например, из-за неправильных условий эксплуатации, перегрева или неправильного подключения. В этом случае велика вероятность того, что высокое питающее напряжение окажется на выходе усилителя, и, следовательно, беспрепятственно окажется прямо на динамиках акустической системы. Таким образом, вышедший из строя усилитель утягивает за собой «в мир иной» подключенную к нему акустическую систему, которая может стоить гораздо дороже самого усилителя. Именно поэтому крайне рекомендуется подключать усилитель к колонкам через специальную плату, которая называется защитой акустических систем.

Схема

Один из вариантов такой защиты показан на схеме выше. Работает защита следующим образом: сигнал с выхода усилителя подаётся на вход IN, а колонки подключаются к выходу OUT. Минус усилителя соединяется с минусом схемы защиты и идёт к колонкам напрямую. В обычном состоянии, когда усилитель работает и на плату защиты поступает питание реле Rel 1 замыкает вход платы на выход и сигнал идёт напрямую с усилителя на колонки. Но как только на входе появляется постоянное напряжение хотя бы 2-3 вольта, защита срабатывает, реле отключается, тем самым отключая усилитель от колонок. Схема не критична к номиналам резисторов и допускает разброс. Транзистор Т1 можно ставить 2N5551, 2N5833, BC547, КТ3102 или любой другой маломощный npn транзистор. Т2 обязательно должен быть составным с большим коэффициентом усиления, например, BDX53 или КТ829Г. Светодиод на схеме служит для индикации состояния реле. Когда он горит реле включено, сигнал идёт напрямую с усилителя на колонки. Помимо защиты от постоянного напряжения, схема обеспечивает задержку подключения акустической системы. После подачи напряжения питания реле включается не сразу, а через 2-3 секунды, это нужно для того, чтобы избежать щелчков в колонках при включении усилителя. Напряжение питания схемы 12 вольт. Реле можно применить любое с напряжением питания обмотки 12 вольт и максимальным током через контакты хотя бы 10 ампер. Кнопка с фиксацией S1 выводится на проводах, она нужна для принудительного отключения реле, на всякий случай. Если это не требуется, можно просто замкнуть дорожки на печатной плате.

(cкачиваний: 492)


Сборка устройства

Усилители, чаще всего, рассчитаны на два канала, левый и правый, поэтому схему защиты нужно повторить дважды для каждого канала. Для удобства плата разведена так, что на ней уже предусмотрена сборка сразу двух одинаковых схем. Печатная плата изготавливается методом ЛУТ, её размеры составляют 100 х 35 мм.


После сверления отверстий дорожки желательно залудить. Теперь можно приступать к запаиванию деталей. Особое внимание следует уделить цоколёвке транзисторов, очень важно не перепутать её и впаять транзисторы нужной стороной. Как обычно, сначала запаиваются мелкие детали – резисторы, диоды, конденсаторы, а уже затем транзисторы, клеммники, и в самую последнюю очередь массивные реле. Для подключения всех проводов можно использовать клеммники, места для которых предусмотрены на плате. После завершения пайки нужно смыть остатки флюса с дорожек, проверить правильность монтажа.


Испытания защиты

Теперь, когда плата полностью готова, можно приступать к испытаниям. Подаём питание на схему (12 вольт), спустя две секунды одновременно должны щёлкнуть реле и включиться светодиоды. Теперь берём какой-нибудь источник постоянного напряжения, например, батарейку, и подключаем её между минусом схемы и входом. Реле должно сразу же выключиться. Убираем батарейку – реле вновь включается. Можно подключить батарейку, поменяв её полярность, схема срабатывает независимо от того, какой полярности напряжение появится на её входе. Те же самые манипуляции проделываем со второй схемой, расположенной на этой же плате. Порог срабатывания защиты составляет примерно 2 вольта. Теперь, когда плата защиты протестирована, можно подключать её к усилителю и не бояться, что динамики в дорогостоящих колонках испортятся из-за поломки усилителя. Удачной сборки.
© 2024 Вопросы и ответы